Minggu, 03 Januari 2016

regresi linier sederhana




 akan dianalisis data yang bertujuan untuk mencari faktor yang berpengaruh terhadap tekanan sistolik darah (SBP) dengan variable predaktor : - Usia (AGE)
                                                      - Berat Badan

                                                      - Riwayat perokok

            LANGKAH LANGKAH :
Masukan data pada SPSS
Klik data view
pilih Analize
pilih regresion
muncul jendela, pindahkan SBP ke dependen, selanjutnya age, perokok, dan beraat badan ke independent           
                     
            Variables Entered/Removedb
Model
Variables Entered
Variables Removed
Method
1
BB, perokok, AGEa
.
Enter
a. All requested variables entered.

b. Dependent Variable: SBP




Regression

Model Summary
Model
R
R Square
Adjusted R Square
Std. Error of the Estimate
1
.860a
.740
.708
12.320
a. Predictors: (Constant), BB, perokok, AGE


ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
10781.042
3
3593.681
23.675
.000a
Residual
3794.820
25
151.793


Total
14575.862
28



a. Predictors: (Constant), BB, perokok, AGE



b. Dependent Variable: SBP






Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
15.950
28.859

.553
.585
AGE
.552
.238
.386
2.319
.029
perokok
7.744
6.571
.172
1.178
.250
BB
1.439
.496
.412
2.902
.008
a. Dependent Variable: SBP






REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT SBP
  /METHOD=ENTER AGE perokok BB.

Regression


Variables Entered/Removedb
Model
Variables Entered
Variables Removed
Method
1
BB, perokok, AGEa
.
Enter
a. All requested variables entered.

b. Dependent Variable: SBP



Model Summary
Model
R
R Square
Adjusted R Square
Std. Error of the Estimate
1
.867a
.751
.722
12.114
a. Predictors: (Constant), BB, perokok, AGE


ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
11514.369
3
3838.123
26.153
.000a
Residual
3815.631
26
146.755


Total
15330.000
29



a. Predictors: (Constant), BB, perokok, AGE



b. Dependent Variable: SBP






Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
18.273
27.697

.660
.515
AGE
.548
.234
.387
2.344
.027
perokok
7.745
6.461
.171
1.199
.241
BB
1.405
.479
.412
2.932
.007
a. Dependent Variable: SBP






REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT SBP
  /METHOD=STEPWISE AGE perokok BB.

Regression

Notes
Output Created
04-Jan-2016 08:51:45
Comments

Input
Active Dataset
DataSet0
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data File
33
Missing Value Handling
Definition of Missing
User-defined missing values are treated as missing.
Cases Used
Statistics are based on cases with no missing values for any variable used.
Syntax
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT SBP
  /METHOD=STEPWISE AGE perokok BB.

Resources
Processor Time
00:00:00.031
Elapsed Time
00:00:00.016
Memory Required
2116 bytes
Additional Memory Required for Residual Plots
0 bytes


[DataSet0] 

Variables Entered/Removeda
Model
Variables Entered
Variables Removed
Method
1
AGE
.
Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
2
BB
.
Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
a. Dependent Variable: SBP



Model Summary
Model
R
R Square
Adjusted R Square
Std. Error of the Estimate
1
.802a
.643
.631
13.973
2
.859b
.737
.718
12.212
a. Predictors: (Constant), AGE

b. Predictors: (Constant), AGE, BB



ANOVAc
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
9863.229
1
9863.229
50.518
.000a
Residual
5466.771
28
195.242


Total
15330.000
29



2
Regression
11303.498
2
5651.749
37.898
.000b
Residual
4026.502
27
149.130


Total
15330.000
29



a. Predictors: (Constant), AGE




b. Predictors: (Constant), AGE, BB



c. Dependent Variable: SBP






Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
90.170
7.858

11.474
.000
AGE
1.138
.160
.802
7.108
.000
2
(Constant)
9.360
26.895

.348
.731
AGE
.699
.199
.493
3.517
.002
BB
1.486
.478
.435
3.108
.004
a. Dependent Variable: SBP






Excluded Variablesc
Model
Beta In
t
Sig.
Partial Correlation
Collinearity Statistics
Tolerance
1
perokok
.230a
1.439
.162
.267
.480
BB
.435a
3.108
.004
.513
.496
2
perokok
.171b
1.199
.241
.229
.471
a. Predictors in the Model: (Constant), AGE


b. Predictors in the Model: (Constant), AGE, BB


c. Dependent Variable: SBP





REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT SBP
  /METHOD=ENTER AGE perokok BB.

Regression


[DataSet0] 

Variables Entered/Removedb
Model
Variables Entered
Variables Removed
Method
1
BB, perokok, AGEa
.
Enter
a. All requested variables entered.

b. Dependent Variable: SBP



Model Summary
Model
R
R Square
Adjusted R Square
Std. Error of the Estimate
1
.867a
.751
.722
12.114
a. Predictors: (Constant), BB, perokok, AGE


ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
11514.369
3
3838.123
26.153
.000a
Residual
3815.631
26
146.755


Total
15330.000
29



a. Predictors: (Constant), BB, perokok, AGE



b. Dependent Variable: SBP






Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
18.273
27.697

.660
.515
AGE
.548
.234
.387
2.344
.027
perokok
7.745
6.461
.171
1.199
.241
BB
1.405
.479
.412
2.932
.007
a. Dependent Variable: SBP





 kesimpulan : Dari data diatas dapat disimpulkan bahwa dari metode Enter dan metode stepwise nilai yang paling kecil adalah AGE

Tidak ada komentar:

Posting Komentar